A Multiple-objective ILP based Global Routing Approach for VLSI ASIC Design
نویسنده
چکیده
A VLSI chip can today contain hundreds of millions transistors and is expected to contain more than 1 billion transistors in the next decade. In order to handle this rapid growth in integration technology, the design procedure is therefore divided into a sequence of design steps. Circuit layout is the design step in which a physical realization of a circuit is obtained from its functional description. Global routing is one of the key subproblems of the circuit layout which involves finding an approximate path for the wires connecting the elements of the circuit without violating resource constraints. The global routing problem is NP-hard, therefore, heuristics capable of producing high quality routes with little computational effort are required as we move into the Deep Sub-Micron (DSM) regime. In this thesis, different approaches for global routing problem are first reviewed. The advantages and disadvantages of these approaches are also summarized. According to this literature review, several mathematical programming based global routing models are fully investigated. Quality of solution obtained by these models are then compared with traditional Maze routing technique. The experimental results show that the proposed model can optimize several global routing objectives simultaneously and effectively. Also, it is easy to incorporate new objectives into the proposed global routing model. To speedup the computation time of the proposed ILP based global router, several hierarchical methods are combined with the flat ILP based global routing approach. The experimental results indicate that the bottom-up global routing method can reduce the computation time effectively with a slight increase of maximum routing density. In addition to wire area, routability, and vias, performance and low power are also important goals in global routing, especially in deep submicron designs. Previous efforts that focused on power optimization for global routing are hindered by excessively long run times or the routing of a subset of the nets. Accordingly, a power efficient multi-pin global routing technique (PIRT) is proposed in this thesis. This integer linear programming based techniques strives to find a power efficient global routing solution. The results indicate that an average power savings as high as 32% for the 130-nm technology can be achieved with no impact on the maximum chip frequency.
منابع مشابه
A Multiple-objective based Hierarchical Global Routing Approach for VLSI ASIC Design
A VLSI chip can today contain hundreds of millions transistors and is expected to contain more than 1 billion transistors in the next decade. In order to handle this rapid growth in integration technology, the design procedure is therefore divided into a sequence of design steps. Circuit layout is the design step in which a physical realization of a circuit is obtained from its functional descr...
متن کاملAn ILP based hierarchical global routing approach for VLSI ASIC design
The use of integrated circuits in high-performance computing, telecommunications, and consumer electronics has been growing at a very fast pace. The level of integration as measured by the number of logic gates in a chip has been steadily rising due to the rapid progress in processing and interconnect technology. The interconnect delay in VLSI circuits has become a critical determiner of circui...
متن کاملModular approach for an ASIC integration of electrical drive controls
VLSI circuits design allows today to consider new modes of implementation for electrical controls. However, design techniques require an adaptation effort that few designers, too accustomed to the software approach, provide. The authors of this article propose to develop a methodology to guide the electrical designers towards optimal performances of control algorithms implementation. Thus, they...
متن کاملAn Integer Linear Programming Algorithm for Crosstalk-Constrained River Routing
As advances in technology produce smaller interconnection wire spacing and higher circuit operating frequency, the effect of crosstalks on performance and even on yield in integrated circuit design and manufacturing thus increases rapidly. Consequently, reduction of crosstalks between interconnection wires has become important in VLSI (very large scale integration) design. In this paper, an app...
متن کاملA survey on multi-net global routing for integrated circuits
This paper presents a comprehensive survey on global routing research over about the last two decades, with an emphasis on the problems of simultaneously routing multiple nets in VLSI circuits under various design styles. The survey begins with a coverage of traditional approaches such as sequential routing and rip-up-and-reroute, and then discusses multicommodity flow based methods, which have...
متن کامل